Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The design and development of solar‐blind photodetectors utilizing ultrawide bandgap semiconductors have garnered significant attention due to their extensive utility in specialty commercial sectors. Solar‐blind photodetectors that display excellent photosensitivity, fast response time and are produced using cost‐effective fabrication steps will fulfill the performance demands in relevant applications. Herein, highly textured Sn‐doped Ga2O3thin film metal‐semiconductor‐metal type deep‐UV photodetectors using a commercially scalable magnetron sputtering method are reported. Commercially achievable growth and fabrication steps are intentionally chosen to demonstrate an economically viable photodetection workflow without compromising the device's performance. In‐depth structural, morphological, chemical, and optical characterization are reported to optimize the configuration for further device fabrication and testing. Under transient triggering circumstances, a fast response time of ≈500 ms is reported, accompanied by a responsivity of ≈60.5 A W−1. The detectivity, external quantum efficiency, and photo‐to‐dark current ratio values are reported as 1.6 × 1013Jones, 2.8 × 104%, and 17.4, respectively. The overall device performance and cost‐effective fabrication process for solar‐blind UV photodetection using Sn‐doped Ga2O3is promising. The approach holds promise for significant implications toward the development of electronics capable of functioning in extreme environments and exhibits substantial potential for enhancing low‐cost UV photodetector technology.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Abstract Ultra-thin films of low damping ferromagnetic insulators with perpendicular magnetic anisotropy have been identified as critical to advancing spin-based electronics by significantly reducing the threshold for current-induced magnetization switching while enabling new types of hybrid structures or devices. Here, we have developed a new class of ultra-thin spinel structure Li0.5Al1.0Fe1.5O4(LAFO) films on MgGa2O4(MGO) substrates with: 1) perpendicular magnetic anisotropy; 2) low magnetic damping and 3) the absence of degraded or magnetic dead layers. These films have been integrated with epitaxial Pt spin source layers to demonstrate record low magnetization switching currents and high spin-orbit torque efficiencies. These LAFO films on MGO thus combine all of the desirable properties of ferromagnetic insulators with perpendicular magnetic anisotropy, opening new possibilities for spin based electronics.more » « less
-
Memristor devices fabricated using the chalcogenide Ge 2 Te 3 phase change thin films in a metal-insulator-metal structure are characterized using thermal and electrical stimuli in this study. Once the thermal and electrical stimuli are applied, cross-sectional transmission electron microscopy (TEM) and X-ray energy-dispersive spectroscopy (XEDS) analyses are performed to determine structural and compositional changes in the devices. Electrical measurements on these devices showed a need for increasing compliance current between cycles to initiate switching from low resistance state (LRS) to high resistance state (HRS). The measured resistance in HRS also exhibited a steady decrease with increase in the compliance current. High resolution TEM studies on devices in HRS showed the presence of residual crystalline phase at the top-electrode/dielectric interface, which may explain the observed dependence on compliance current. XEDS study revealed diffusion related processes at dielectric-electrode interface characterized, by the separation of Ge 2 Te 3 into Ge- and Te- enriched interfacial layers. This was also accompanied by spikes in O level at these regions. Furthermore, in-situ heating experiments on as-grown thin films revealed a deleterious effect of Ti adhesive layer, wherein the in-diffusion of Ti leads to further degradation of the dielectric layer. This experimental physics-based study shows that the large HRS/LRS ratio below the current compliance limit of 1 mA and the ability to control the HRS and LRS by varying the compliance current are attractive for memristor and neuromorphic computing applications.more » « less
-
null (Ed.)Bimetallic nanoparticles remain a promising avenue to achieve highly reactive catalysts. In this contribution, we demonstrate the use of a photoswitchable peptide for the production of PdAu bimetallic nanoparticles at a variety of Pd : Au ratios. Using this peptide, the biomolecular overlayer structure can be switched between two different conformations ( cis vs. trans ) via light irradiation, thus accessing two different surface structures. The composition and arrangement of the materials was fully characterized, including atomic-level analyses, after which the reactivity of the bimetallic materials was explored using the reduction of 4-nitrophenol as a model system. Using these materials, it was demonstrated that the reactivity was maximized for the particles prepared at a Pd : Au ratio of 1 : 3 and with the peptide in the cis conformation. Such results present routes to a new generation of catalysts that could be remotely activated for on/off reactivity as a function of the ligand overlayer conformation.more » « less
-
null (Ed.)Abstract Crystalline solids exhibiting glass-like thermal conductivity have attracted substantial attention both for fundamental interest and applications such as thermoelectrics. In most crystals, the competition of phonon scattering by anharmonic interactions and crystalline imperfections leads to a non-monotonic trend of thermal conductivity with temperature. Defect-free crystals that exhibit the glassy trend of low thermal conductivity with a monotonic increase with temperature are desirable because they are intrinsically thermally insulating while retaining useful properties of perfect crystals. However, this behavior is rare, and its microscopic origin remains unclear. Here, we report the observation of ultralow and glass-like thermal conductivity in a hexagonal perovskite chalcogenide single crystal, BaTiS 3 , despite its highly symmetric and simple primitive cell. Elastic and inelastic scattering measurements reveal the quantum mechanical origin of this unusual trend. A two-level atomic tunneling system exists in a shallow double-well potential of the Ti atom and is of sufficiently high frequency to scatter heat-carrying phonons up to room temperature. While atomic tunneling has been invoked to explain the low-temperature thermal conductivity of solids for decades, our study establishes the presence of sub-THz frequency tunneling systems even in high-quality, electrically insulating single crystals, leading to anomalous transport properties well above cryogenic temperatures.more » « less
An official website of the United States government
